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ABSTRACT 

The Fourier analyt ic  approach  to sect ions of convex bodies has  recent ly  

been developed and  has  led to several  results ,  including a comple te  an- 

alytic solut ion to the  B u s e m a n n  P e t t y  problem, character iza t ions  of in- 

tersect ion bodies,  ex t remal  sections of /p-bal ls .  In this  article, we ex tend  

this  approach  to project ions  of convex bodies and  show tha t  the  pro- 

ject ion coun te rpar t s  of the  resul ts  ment ioned  above can be  proved us ing 

similar methods .  In par t icular ,  we present  a Fourier analyt ic  proof  of 

the  recent  result  of  B a r t h e  and  Naor  on ex t remal  project ions  of /p-bal l s ,  

and  give a Fourier analyt ic  solution to Shephard ' s  problem, originally 

solved by P e t t y  and  Schneider  and  asking whe the r  symmet r i c  convex bod- 

ies wi th  smal ler  hyperp lane  project ions  necessari ly have smaller  volume.  

The  proofs are based on a formula  express ing the  vo lume of hyperp lane  

project ions  in t e r m s  of the  Fourier t r ans fo rm of the  curva tu re  function.  
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1. I n t r o d u c t i o n  

The study of geometric properties of bodies based on information about  sections 

and projections of these bodies has important  applications to many areas of 

mathematics  and science. A new approach to sections of convex bodies, based 

on methods of Fourier analysis, has recently been developed and has led to several 

results including an analytic solution to the Busemann Pet ty problem (see the 

survey [K4] for a brief description of this approach). The goal of this article is to 

extend this method to projections of convex bodies and show that  several results 

on projections can be proved in the same spirit as their section counterparts. 

The Fourier transform approach to sections of convex bodies is based on certain 

fornmlas connecting the volume of sections with the Fourier transform of powers 

of the Minkowski flmetional. For instance, it was proved in [K5] that,  for any 

symmetric convex body K in R n and every ~ E S '~- 1 

1 
(1) Vol,~_l(I( A ~±) - 7r(n - 1~ (ll" II~'~+I)A(~), 

where Ilxll/, = min{a > 0: x E aK} is the Minkowski functional of It', ~± is the 

central hyperplane orthogonal to ~, and the Fourier transform is considered in 

the sense of distributions. 

In Section 2 we prove the projection analog of this fornmla (see Theorem 2 

below): if the surface area measure of K is absolutely continuous, then 

(2) Voln_,(NI 0±) = - l~/x-(0)  V0 E S n - l ,  
7r 

where K[O ± is the orthogonal projection of K onto the hyperplane 0 ±, f/,- is the 

curvature function of the body K extended to a homogeneous of degree - n  - 1 

function on R n, and the Fourier transform is in the sense of distributions. 

In Section 3 we apply formula (2) to give a Fourier analytic proof of the recent 

result of Barthe and Naor [BN] that,  for p _> 2, the minimal and maximal hyper- 

plane projections of the unit balls B~ * of the spaces l~ are the ones corresponding 

to the vectors 01 = (1, 0 , . . . ,  0) and 0n = ( 1 / v ~ , . . . ,  1 / v ~ ) ,  respectively. The 

proof in [BN] is based on a certain formula for the volume of projections (see 
formula (8)) that  is obtained using probabilistic arguments. We show that  this 

fornmla is a particular case of formula (2) and can be derived by a direct com- 

putat ion of the Fourier transform of the curvature function of/p-balls.  This 

makes the proof of the result of Barthe and Naor similar to the proof of the 

corresponding result for hyperplane sections of the balls B~ with 0 < p < 2 in 

[K5]. 
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Another application is to the Shephard problem. Tile problem (see [Sh]) reads 

as follows. Let K, L be convex symmetric bodies in 1R n and suppose that,  for 

every 0 c S n-  1 

(3) Vol,,_l(I£10 ±) <_ Voln-I(LI0±).  

Does it, follow that  

(4) Vol . (K)  _< Voln(L)? 

The problem was solved independently by Petty [P] and Schneider [Sell, who 

showed that  the answer is affirmative if n < 2 and negative if 72, _> 3. Further 

results were obtained by Ball [B], who proved that it. is necessary to multiply 

Voln (L) by v~/ to  make the answer affirmative in all dimensions, and by Goodey 

and Zhang [GZ], who solved the generalized Shephard's problem with lower di- 

mensional projections. The section counterpart of Shephard's problem is the 

Busemmm Petty problem asking whether symmetric convex bodies with larger 

central hyperplane sections necessarily have greater volume. The solution to the 

Busemann-Pet ty problem has recently been completed (see [GKS] and [Zh] for 

historical details) and the answer is affirmative if n _< 4 and negative if n _> 5. 

In Section 5, we present a new solution of the Shephard problem, which is 

completely Fourier analytic, and, along with formula (2), is based on a certain 

spherical version of Parseval's formula. This solution is in the spirit of the solution 

to the Busenlalm-Petty problem from [K3]. 

In Section 4, we give a Fourier analytic characterization of projection bodies, 

which, in particular, leads to the following connection between projections and 

sections: if ~ is an even integer and L is a symmetric convex body in IR '* with 

infinitely smooth (on S '~-1) support fimction, then L is a projection body if 

and only if, for every ~ E S '~-1, we have (-1)~/2A~)~(0), > 0, where A/~.¢ is 

the parallel section function of the polar body L* in the direction of ~. If 'n is 

odd the condition is slightly lnore complicated, but is also expressed in terms 

of sections. These characterization of projection bodies are sinfilar to that of 

intersection bodies in [K6]. In particular, Theorem 1 from [K6], in conjunction 

with formula (15), implies that an infinitely smooth synnnetric convex body 

L in R n (with even n) is an intersection body if and only if, for every ~ E 

S ~-~, ; -~( '~-2)/2a(n-2)m~ > 0. These conditions explain why the transition 

in Shephard's problem occurs between the dimensions 2 and 3, while in the 

Busemann Petty problem it happens between 4 and 5: convexity allows to control 

the derivatives only up to the second order. 
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2. V o l u m e  of  p r o j e c t i o n s  v ia  Fourier  t rans form 

Our main tool is the Fourier transform of distributions. We denote by S the space 

of rapidly decreasing infinitely differentiable functions (test functions) on R n with 

values in C. By S'  we denote the space of distributions over 8. Every locally 

integrable real valued function f on R '~ with power growth at infinity represents 

a distribution acting by integration: for every ¢ E S, (f, ¢) = fR, f(x)¢(x)dx. 
The Fourier transform of a distribution f is defined by ( / ,  ¢) = (27r)~(f, ¢), for 

every test function ¢. 

Let # be a finite Borel measure on the unit sphere S n-1. A distribution #e is 

called the extended measure of # if, for every even test function ¢ C S(R n), 

1 f8  @-2, ¢(r~))d#(~). ( 5 )  = 

In most cases we are only interested in test functions supported outside of the 

origin, for which @-2, ¢(r~)) = fR r-2¢(r~) dr, see [GS] page 52. Observe that 

#~ is a homogeneous distribution of degree - n  - 1. 

If p is absolutely continuous with the density g C LI(Sn-1) ,  we define the 

extension g(x), x C R n \ {0} as a homogeneous function of degree - n  - 1: 

g(x) = ].vi-"-lg(z/]x]) and identify ~ with ~. 

Throughout the paper, we write that two homogeneous distributions are equal 

on the sphere meaning that their homogeneous extensions are equal as distribu- 

tions on R n. For instance, the distributions in both sides of (1) are homogeneous 

of degree -1, while in (2) the degree of homogeneity is 1. Recall that the Fourier 

transform of an even homogeneous distribution of degree p is an even homoge- 

neous distribution of degree - n  - p. 

The following fact is well-known, see for example [Se], formula 4.7. We include 

here a proof similar to that  from [K2], Lemma 2. 

THEOREM 1: For every 0 E S '~-~, 

: - £ o _ ,  ,(0, 

Proof." Let ¢ C $(R ~) be an even test function so that 0 ~ supp(¢). Then, by 

the definition of p~, 

l j ~  f ~  (~e, 4)) = (#e, @ = -~ dpe (0) r-2¢(rO)dr. 
n -- 1 

By Lemma 2.1 from [K2] 

~ ,  I(O'x)l~'(x)dx = (2~r) '~-tF(_l/2 ~ fRr-2~(rO)dr 
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for any even (/, e S ( R ' )  with 0 ~ supp('¢,). 

This gives (with ~}, = ¢) 

(~,0) = - ~ d~,(0) I ( 0 , ~ ) t ¢ ( ~ ) d ~  
n i n 

Since 0 is an arbitrary even test fimetion with 0 ~ supp(¢), the distributions 

and -7r/2 f s - - '  ](0, ~)]d#(O) can differ by a polynonfial only. But both distribu- 

tions are even and homogeneous of degree one, so the polynomial must be equal 

to zero, and ~ coincides with the continuous function - r  r~2 f~,,~_~ ](0, ~)[dp(O). 
II 

To apply Theorem 1 to the study of volumes of projections of convex bodies, 

we use the well-known Cauehy formula ([G], page 361): 

lfs, 10 (L,v), 06S  "-1. (6) Vol,_l(L10 ±) = ~ ,,-~ -'vldS',~_l 

Here S,,_I(L, .) is the surface area measure of L ([G], page 351). 

A convex body L is said to have a curvature fimction 

fL( ' ) :  s n - 1  ~ ~,  

if its surface area measure Sn-I(L, ' )  is absolutely continuous with respect, to 

Lebesgue measure a . _  ~ on S ' -  1 and 

dS._~(L, .) 
= IL(') ~ n , ( s n - ' ) .  

dcr n -  1 

The next statement follows from the Cauchy formula (6) and Theorem 1. We 

denote by Se(L) the extended measure of the surface area measure S,,_I(L,.), 
see (5). 

THEOREM 2: Let L be a convex origin symmetric body in R ' .  Then 

A 

Sc(L)(O) = -zrVol._l(LtO±),  VO E S "-~. 

In particular, if  the body L has a curvature function then 

fL(O) = --Tr Voln-l(Z[O-l-),  V0 E S n-1.  
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3. Project ions  of the  unit  ball of ~ 

In order to show similarities between the section and projection cases, we first 

recall how was formula (1) applied in [K5] to the problem of finding the extremal 

sections of the unit balls B~ of the spaces l~,, 0 < p _< 2. The result of [K5] is as 

follows: if 0 < p < 2 then, for every 0 C S " - l ,  

Voln_,( ; n _< Vol _,(B; 0") < Voln_,(B; n 00, 

where 01 = (1,0 . . . . .  0) and 0,~ = ( 1 / v ~ , . . . ,  1/x/n). 

In the case of/p-balls the Fourier transform in the right-hand side of (1) can 

be expressed in terms of the function % which is the Fourier transform of the 

function z -+ exp(-Iz[P), z C ~ Formula (1) turns into 

/(fl P ~p(t~k)dt, (7) V°ln-~(BP n (±)  = ~r (n-  1 ) p ( ( n -  1)/p) 
k = l  

which is true for every p > 0 and ~ E S n-1. Note that the latter fornmla was 

first proved by Meyer and Pajor IMP] for 1 <_ p _< 2 using different methods, and 

that it was used in [MP] to find the extremal sections of B[ ~. 

The second step in [K5] is to prove that, for 0 < p _< 2, the function 7p(x/:) is 

log-convex on [0, oe). The proof is based on the fact that the function e x p ( -  I • I a) 

is completely monotonic on [0, ec) for every a C (0, 1]. 

The log-convexity implies that for any choice of numbers 0 < ~1 < ~1 < r12 < ~2 

with ~ + ~ = r/~ + '1/2 = 1 and any t > 0, one has 

%(t{l)7~,(t~2) _> %(trll)%(trj2). 

It is now clear that the integrand in the right-hand side of (7) is minimal if all the 

coordinates of ~ are equal, and maximal when ~ has only one non-zero coordinate, 

which finishes the proof. 

The result of Barthe and Naor [BN] on the extremal hyperplane projections of 

the balls Bp with p >_ 2 is as follows: 

THEOREM 3 ([BN]): Let p > 2 and 0 E S"-1; then 

n n 2_ gol.n-l(Bp]0i k) < Voln_l (Bp 102-) < Voln_~(B v 10,~ ), 

where 01 = (1, 0 . . . . .  0) and 0, : ( 1 / v ~  . . . . .  1/x/~). 

The proof in [BN] is based on a fornmla similar to (7): for every { E S n-~, 

2n r ,  ( l /p)  [ ~  1 - Y I ~ = I  2F~I/p)/~P*(tek) 
(8) V°l"-i(B~t{2-) = r rP"- l -T~ - - - ~ )  Jo t2 dt, 
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where l i p  + l /p* = 1 and ~p.(u) is the Fourier transform of the function 

]a,F*-2e -I~È* on R. The proof of this formula in [BN] uses probabilistie ar- 

gmnents. The rest of the proof of Theorem 3 is similar to that  for sections. For 

p > 2, the function /3p. (v/r) is log-convex on [0, oo), which is proved in a way 

similar to the case of the function % in [K5]. Theorem 3 immediately follows 

from this and (8). 

In this section we show that  formula (8) is a particular case of formula (2) 

and holds for every p > 1. In particular, this allows us to unify methods in the 

section and projection cases. We do that  by computing the Fourier transform 

of the curvature flmction of/p-balls using techniques from differential geometry 

(see [Th]) and a trick for calculating the Fourier transform from [K5]. 

f~ 7~ 
LEMMA 1: Let B v = {x E R ~ : ~ = 1  ]a:il p <- 1}, 1 < p < c~. Then 

= , 0 E  fBp (0) (P* -- 1) n -1  IOil p*-2 II011 --~>--n,* sn--1 ,  

where l /p* + l i p  = 1. 

Proof'. Recall that  fB;~ is the reciprocal Gauss curvature, viewed as a flmction 

of the unit normal vector (see [Sc2], page 419), so to find fB;~ (0) we first compute 

the Gaussian curvature I£p(X) of B~, and then we invert the Gaussian map. 

Let F ( x b . . . ,  x~) = ~7.'i~=, loci]P; then the boundary 

a B p ' =  {x E ~n  : F ( a : l , . . . , X n )  = 1}. 

Let 

Z(x)  = - 1-VF(:,,) = -()oc,I ~-~ signx~ . . . .  , Ix,,.I ' - ~  s ignx , ) .  
P 

We use tile following formula for the Gaussian curvature (see, for example, [Th], 

Theorem 5, page 89): 

(9) A'(a:) = ( -1 )  ~-1 det 
/ / iz I/Ig(x)ln-*det v -l! 

Z(.,:) / Z(x) / 

Here vectors *'1 . . . .  , v,,_ l can be chosen as any basis in the tangent space at the 

corresponding point, and 

V v i Z  = ( V v { Z l  . . . .  , VviZ,~)  = (vi . V Z l , . . . , * ; i .  V Zn) .  
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We choose vl . . . . .  v,,-1 in the following way: for every k, 1 < k < n - 1, 

= ( IXk + l l  sign Xk+l, 0 , . . . ,  0 ,  --IXl I ~-  1 sign Xl, 0 . . . . .  0 ,  ). 

k -  1 times 

Then  

V,,~Z(x) = (p - 1) lxlxk+l  I P - 2 ( - x k + l ,  0 . . . . .  O, ;/:l , 0  . . . . .  0 , ) .  

(k+l)s place 

Subst i tu t ing this in (9) (colnputat ion of the de te rminants  is s tandard) ,  we get 

(10) K p ( x )  = (p  - 1)"-llZ(x)l -n-1H t x l'-z 
i =1  

for ahnost  all x E OB~L 
I t  renmins to invert the Gauss ian  m a p  0 = Z(x)/IZ(x)I .  We see tha t  0 and 

Z(x) are collinear vectors in R '~, i.e. 0 = AZ(x) for some A > 0. Next  

X i ~-- A1/(p--1)]Oil 1/(p-l)  signOi,  

and using IIxIl~ = 1 we get 

A =  

Final ly 

(ZL, Io U(P-1)) (p-l)/'" 

xi -'- -(lOiil/(P-1)signOi)/ loll p/(p-1)\I/p. 

To finish the proof, we subst i tu te  the last expression into (10) and use p - 1 = 
(p* -- 1) -1 .  ' 

In the next  s t a t ement  we present  a new proof  of formula (8), originally proved 

in [BN] .  

THEOREM 4: Formula (8) holds for every p > 1. 

Proof: According to Theorem 2, we have to compute  the Fourier t rans form of 

fBg (x) = Ixl-n- l fBg (x /b 'D ,  x ~ R n \  {0}. From tile definition of the G a m m a  

function 

(11) P* ~0 ~ * * * IIxil-~Y- r ( q / p * )  y q - l e - y P  (Ix~lP +"'+lxalP )dy 
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for any q > 0 and x E N" \ {0}. 

Let ¢ E S(R") be even and such that 0 ~/supp(¢). Using (11), we get 

(p* - 1) .... l p .  = F(q/'~ L Yq-ldY~ "~-I]xl';lp'-'2e-up*l~kl~*$(:r)dx 
k = l  

/o fI k = l  

= ~ q ~ ; i  yq-~dy ,, I I ( N P ' - ' 2 e - S I t I " * ) ^ ( ~ . ) ¢ ( ~ ) d ~ .  
k = l  

This gives 

A (p* _ 1)n-ap * 

k = l  

Now replacing q by n p * -  (n - 1), and using the fact that 0 • supp(¢) implies 

f~,, ¢(~)d~ = 0, we obtain 

( f . ; : , 0 )=r (7 -_~ ,7 -~ . )  dv I~,-()-13,.(0) O(~)d~ 
" k = l  

- = r ( ~ - - ~ £ - 1 ~ * )  ,, O(~)d~ H ~p' (  ) - l~p.(O)du, 
k = l  

where 

0,. (0)= I..1"'-=~ -I''l~ d u  . . . .  U - l Ip  e-~'dv = r ( 1 -  l /p*) .  

Making a substitution (k/Y = t, we finally get 

(P* - 1)"-lP * rIk=l tip. (.~,;) -t3;~*(O)dt 

2nFr~(a/p) ~ fo~ H,~=t p" 2 m / , )  ~ "  (t~k) - 1 
=p'*-aV(n---(Z~ Zl)/p*) ,~ ch(~)d~ t2 dt. 

Since ¢ is an arbitrary even test. flmction with 0 q~ supp(¢), the distributions in 

the left and right-hand sides of the latter equality are equal (they are both even 

homogeneous of degree 1). Now the result follows from Theorem 2. I 



370 A. KOLDOBSKY, D. RYABOGIN AND A. ZVAVITCH Isr. J. Math. 

4. Project ion bodies  

Let K be an origin symmetric convex body in [R n . The p r o j e c t i o n  b o d y  I l K  of 

K is defined as an origin symmetric convex body in Nt '* whose support function 

in every direction is equal to the volume of the hyperplane projection of K in 

this direction: for every 0 C S ~'-1, 

Vo ln - , ( t (  0 3-) 1 £ I0. vidS~_l(I i ,  v). (12) hnK(O) = = -2 ~-1 

We extend hn t t  to a homogeneous function of degree 1 on 1R'. It  immediately 

follows from Theorem 1 that  the Fourier transform of hilt(  is equal (up to a 

constant) to the extended surface area measure of K: 

(13) hn/~- = - ( 2 r r ) n - l s ~ ( I i ) .  

O11 the other hand, if L is an origin symmetric convex body so that  hL = 

--(2rr)n-l#~ is an extended measure of some even finite Borel measure # on 

S n-1 then, again by Theorem 1, one has 

1 £ 10" vl@(v). hL(O)= 

Since L is an n-dimensional body, the measure it cannot be supported in any 

great subsphere of S n - l ,  and, by Minkowski's existence theorem ([G], page 356), 

the measure t~ is the surface area measure of some origin symmetric convex body 

K.  By Cauchy's formula, we have £ = I lK.  We have proved the following Fourier 

analytic characterization of projection bodies (this fact can also be shown as a 

combination of several well-known facts about zonoids and subspaces of £1): 

PROPOSITION 1: An origin s y m m e t r i c  convex  body  L in IR n is the project ion 

body  o f  some  origin s y m m e t r i c  convex  body  i f  and only  i f  there exis ts  a measure 

p on S n-1 so that  

(14) hL = -(2r~)n- lpe.  

The measure p serves as the surface area measure o f  an origin s y m m e t r i c  convex  

body  K so that  L = I l K .  

The condition that  L is a projection body is equivalent to L being an origin 

symmetric zonoid (see [G], p. 134), which, in turn, is equivalent to the polar body 

L* being the unit ball of a subspace of L1. I t  is well-known that  every origin 

symmetric convex body in R 2 is a projection body (or it is the unit ball of a 

subspace of L1, see [He], [Fe], [Li D. As proved in [I,:l], for L -- B~, 0 < p < 2, 
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n _> 3 the function hu~ = I1" lip* has a sign-changing Fourier t ransform,  which 

implies tha t  the spaces lq, q > 2, n >_ 3 do not embed  isometrically in L1 (this 

fact was first proved by other  methods  by Dor [D]). 

To get a character izat ion of project ion bodies in te rms  of sections of the polar  

body, we use a formula from [GKS], p. 693. Let D be an infinitely smoo th  origin 

symmet r i c  convex body  in R ~, k E N U {0}, k % n - 1, ~ E S n-1.  We denote by 

AD,~(t) = Vol ,~_I (D f3 {~± + t~}),  t E 

the parallel  section flmction of D in the direction of (.  Then: 

(i) If  k is even 

(15) (ll" HD'+A:+I)A(() = (--1)k/27r( n -- k - 1 ) A ~ ) ( 0 ) .  

(ii) If  k is odd 

f 0  - - - A ff(0) "'" (k-l)! dz, (16) (ll ' llDn+k+l)A(() = C,~,k Zk+l 

where c,~,~, = ( - -1 ) ( k+ l ) / 22 (n -  k -  1)k!, A~!~ s tands for the derivative of the 

order k of the function AD,~, and, as before, the equali ty of distr ibutions on the 

sphere is unders tood as the equali ty of their homogeneous extensions. 

Suppose now tha t  an origin symmet r ic  convex body  L in R n has the p roper ty  

tha t  hL is an infinitely differentiable function on the sphere S r '- l .  This means  

tha t  the polar  body  L* is infinitely smooth  (recall t ha t  hL = H" ILL')- Pu t t i ng  

k = n, D = L* in the formulas above, we get tha t  if n is even then, for every 
E S n-1  , 

( 1)l+n/2~A(n) (0 ~ (17) h i ( ( )  = , -  L*,~, ~ 

and if rt is odd then, for every ~ E S ~ -  1, 

(18) 
- A(n-1)tO ~ ~-~ f ~  AL. ,¢(z)  -- AL..¢(O) - . . .  L*,¢ ~ ,-(~-~-~)! 

hL(~) ( - -1 ) (n -1 ) /22n!  
z,~+ 1 dz. Jo 

We can now characterize project ion bodies in t e rms  of sections of the polar  body. 

PROPOSITION 2: Let  L be an origin symmetr ic  convex body  in R n so that  hL 

is infinitely differentiable on S " -1 .  The body  L is a projection body o f  some 

convex body  K i f  and only i f  for every ~ E S"  1 

(i) i f n  is even 

( -1) ' /2A~ ' . )~(0)  _> O; 
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(ii) if n is odd 

L 
~ AL.,¢(z) -- AL.,~(O) . . . . .  A )(0)-( 

( _ l ) ( n + l ) / 2  ~ d z  > O. zn+ l  

Using formulas (17), (18), one can express the volume of a convex body in 

terms of the (n - 1)-dimensional volumes of its hyperplane projections. If L* is 

an infinitely smooth body and n is even then 

(19) Vol,~(L) = (--1) n/2 (271.)n------ ~ A~.),~ (0)Vol~(Ll~±)d~. 
n - - 1  

This formula is an analog of the fornmla expressing the volmne of a body in terms 

of volumes of central hyperplane sections (see the remark before Theorem 4.5 in 

IN4]). 

To prove (19) we recall that (see [G], page 354, [Sc2], page 275) 

(20) Voln ( L ) =  -nl J~,~_ ~ hL(O)fL(O)dO. 

Using Parseval's formula on the sphere (see Appendix, Lemma 4, at the end of 

the paper) we have 

Vol,, (L) - 1 L ~ (27r)n ~ ,~-, hL(¢)fL(~)d~, 

which, together with Theorem 2 and (17), gives (19). 

5. A Fourier analytic solution to the Shephard problem 

Let h L ( x )  : m a x { x  • y : y E L} be the support function of a convex body 

L. By an approximation argument (see [Sc2], pages 158-160), we may assume 

in the formulation of Shephard's problem that the bodies K and L are such 

that hK, hL are infinitely smooth functions on R n \ {0}. Using, for example, 
A 

formulas (15), (16), we get in this case that the Fourier transforms hK, hn are 

the extensions of infinitely differentiable functions on the sphere to homogeneous 

distributions on R '~ of degree - n  - 1. Moreover, by the same approximation 

argument, we may assume that our bodies have absolutely continuous surface 

area measures. Therefore, in the rest of this paper, K and L are convex symmetric 

bodies with infinitely smooth support functions and absolutely continuous surface 

area measures. 
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h 

THEOREM 5: (i) / f  a body L is such that h,L(O) <_ 0 for all 0 E S n-1  then the 

Shephard problem has an aflirmative answer for this L and any K.  

(ii) If fK(O) > 0 for every 0 E S '~-1 and hK is positive on an open subset of 

S 7~-1 then there exists a body L giving together with K a counterexample in 

Shephard's problem. 

Proo~ This theorem will follow froln the next two lenmlas and the fact that the 

condition 

Vol ._I(KI0 ±) < Vol,~_,(tl0 m) 

is equivalent (see Theorem 2) to 

f~(O) >_ f-~(O), 0 E S n-1. 

LEMMA 2: IfhL(O) < O, and fh(O) >_ fL(O), V0 G S '*-1, then 

Vol,,(K) < Vol.(L). 

Proo~ Froln fi~(O) > fL(O) and hL(O) <_ 0 we get 

/~,,._~ h-~L(O)f1,-~"(O)dO < ~,,._, hL(O)fL(O)dO. 

Using Parseval's formula on the sphere (see Appendix) and (20), we get, 

V~(K,L) <_ Vol,(L), 

where VI(K,L)  is the mixed volume (see [Sc2], page 275). Now we apply the 
Minkowski inequality ([Sc2], page 317): 

VI([C,L) k Vol, , (L)V"Voln(K) ( ' - ' ) / "  

to get 

Vol~(L) > Vol.(L)~/~Vol,~(I() ( ' -1) / ' .  | 

A 

LEMMA 3: Let K be such that fK(0) > 0V0 E S n-1. If  h K is positive On an 

open subset of S "-1, then there exists a convex symmetric body L in R 7~ , such 

that 

ff f  >_ fL, 

bur 

Vol,~(K) > Voln(L). 
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Proof: Let fl = {0 E S n-1 : hK(0) > 0} and let v • C°°(S n- l )  be a non- 

positive even fimction supported on f2, v is not identically zero. We extend v to 

a homogeneous function rv(O) of degree 1 on 1R". Then the Fourier transform of 
A 

rv(O) is a homogeneous function of degree - n  - 1: rv(0) = r-n-lg(O ), where g 

is an infinitely smooth function on S n-1 (see Lemma 5 from [K3]). 

Since 9 is bounded on S ~-1, one can choose a small c > 0 so that,  for every 

0 • S  n-1 a n d r > 0 ,  

fL(rO) = fK(rO) + er-n-19(O) > O. 

By Minkowski's existence theorem (see [G], page 356, [Sc2], page 389), fL(O) 
defines a convex symmetric body L • R ' .  By the definition of the function v, 

fL(rO) = fK(rO) + cry(O) <_ fic(rO). 

Next, since v is supported and is non-positive in the set where hK > 0, 

n - - 1  

< jfS,~_ 1 

But again by Parseval's formula, 

fs,~_ h~(O)f'~(O)dO=(2~)~ fs._ ~ 
so  

VI(L, tC) < VO]n(K). 

As in the previous lemma, this implies 

Vol~(K) > Vol~(L). 

hK(O)fL(O)dO = hK(O)fK(O)dO + hK(O)cv(O)dO 
n--I ~ n--I 

hK(O)fff(O)dO = (27r) n hK(O)fK(O)dO = n(27r)n Voln(I().  
d S n - 1 

hK (O)fL (O)dO = n(27r)*~V1 (L, I() ,  

THEOREM 6: The Shephard problem has an affirmative answer in R 2 and 

negative answer in R", n _> 3. 

Proof: Let n = 2. In view of Theorem 5, it is enough to show that  for any convex 
A 

symmetric body L in R 2 such that  hL is infinitely smooth, we have hL _< 0. 

This follows from the fact that  every two-dimensional normed space embeds in 

L1, as mentioned in the previous section. We, however, prefer to give a direct 

Fourier analytic argument, similar to that  in the solution of the Busemann-Pet ty  

problem: by fornmla (17) with n = k = 2, for every ~ E S n - l ,  

A I t  

hL(~) = ~A>,~(0 )  <_ 0, 
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where the last. inequality holds because the central section has maximal volume 

among all hyperplane sections perpendicular to a fixed direction, so the function 

AL*.~ has maximum at zero. 

Let n >_ 3. To apply Theorem 5, we need to give an example of a symmetric 

convex body K so that  hh ~ is infinitely differentiat)le, positive on an open subset 

of S '~'-1 and fl; > 0 on S "-1 .  Let. K ~ be the unit ball of t'~/3" Then the flmetion 
A 

hx,-,(.~,) = II:rile~ is infinitely smooth and h4,-, is positive on some open subset, of 

S n-1 (see [K1], §4). 

Define the body K : ht; = hi,, + chB~,, where c > 0 is such that  hi, is still 

positive on an open subset of S n - l .  Then fK(O) > O, VO c S '~-l, and the result 

follows from Theorem 5. | 

Remarks: (i) The result of Theorem 5 can be translated into the language of 

geometry using the Fourier transform characterization of projection bodies, see 

Proposition 1. What  we get. are the results of Petty and Schneider connecting 

Shephard's problem with t)rojeetion bodies. 

(ii) To explain why the transition in Shephard's problem occurs between the 
h 

dimensions 2 and 3, let us look again at. formulas (17) and (18). The sign of hr 
basically depends on the sign of the derivative A~.)~(0). If n = 2 we can control 

this sign, thanks to the convexity of L*. However, when n _> 3 convexity does not 

control the derivative of order n, which allows one to construct counterexamples. 

Another way to do t, hat is to follow (with very nfinor changes; just replace the 

exponent 1/4 in the definition of the function f~ by 1/2) the counterexample to 

the Busemmm Petty problem from [GKS], Theorem 4. 

6. A p p e n d i x :  A v e r s i o n  o f  P a r s e v a l ' s  f o r m u l a  o n  t h e  s p h e r e  

LEMMA 4: 

fSn_ 1 h~(O)f~,-(O)dO = (27r)'~ ~, . . . .  bL(O)fl,(O)dO. 

Proof: We follow [K3], Lelmnas 2, 3. 

A 

PROPOSITION 3: Let E(t) = t% -t4, lt.r(() = (E(hr)(() .  Then for almost all 
(with respect to Lel)esgue measure) 0 C S '~-1, 

o ~ t ' ~ l l t r ( t O ) l d t  < o c .  

Proof'. Since tIL is a bounded fimction (hr is homogeneous of degree 1, so 
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E(hL)  e Li (R" ) ) ,  

L ' t"l#m(tO)ldt  < ~ • VO S..-1. 

It, remains to  show tha t  for ahnost  all 0, 

(21) t"lPL(tO)ldt < oo. 

But for an even n one may see that  

(22) A('+2)12[h4 e-h4] • Li(R"). 

In fact, after differentiation, the function in front of the exponent is the sunl of 

homogeneous functions of degrees greater than - n ,  and each of them is contin- 

uous on the unit sphere. 

Now, (22) implies tha t  ~ ~-~ I~ln+2/tn((), ~ • R n is a bmmded function, since 

it is the Fourier t ransform of an Ll-flmction,  hence 

£ l~llI,.L(g)ld~< oo. 
I>l 

Passing to the polar coordinates we get (21). 

Finally, one can put  (n + 1)/2 in place of (n + 2)/2 to prove the result for odd 

u.  I 

PROPOSITION 4: Let / tL  be as above and O E $ with 0 ~_ supp(¢).  Then 

e o  , d F  a<z £ ,.L(x)d.,, L O(,..r) _ r(3/4) dr (23)  

Proof'. 
A 

Observe that  E(hL)(rar)({) = ' r -npL({ /r )  for every .,' > O. We have 

p,L (x)dx r-2dp('ra')dr = r-2dr  ¢(rx)p,L(a')da" 
,, dR,, 

f &v)E(rh (v))<tv 
JRn 

By making a subst i tut ion rhL(y) = t ill the last integral and using the fact, tha t  

L eo t2e-t4dt _ F(3/4)  
4 ' 
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we get the desired result 

~ ,  ,,L(X)dX fo~r-2O(rx)dr -F(3/4)  4 ~,,  hL(y)~)(y)dy 

r(3/4) _ r ( 3 / 4 )  (hL, ¢) -- (hL, ¢)  
4 ' 4 

F(3/4) ~ A 
-- 4 hL(~)O(~)d~ 

n 

PROPOSITION 5: Let PL be as above. Then 

f f  A (24) : l ,L(r0)d , ' -  r(a/4)hL(0), V0 • S "-~. 
4 

Proof: Let 0 • 8 be such that 0 ~ supp(¢). Passing to the polar coordinates, 

using Proposition 3 and (23), we get 

-I'(3:4) f,s,._lh'~L(O)(fo~O(rO)~)dO. 
Now we put 0(r0) = u(r)v(0), where v is any infinitely smooth function on S "-I 

and u is a non-negative test function on R, such that 0 ~ s u p p  u. This gives: 

.~,,.-i (fo~t'p'L(tO)dt) v(O)dO- F(3/4)4 fs,,,-~ h1"~L(O)v(o)dO' 
for every v • C~(Sn-1). | 

PROPOSITION 6: Under the same notation, 

_ 1 .£,, ~K(()pL(~)d~. ~ . fK(x)E(hL)(x)d.r (2rr)n 

Proo/? First, note that  both integrals in the latter fonnuta converge absolutely, 

because hL is a homogeneous flmction of degree 1 and by Proposition 3. Since 

E(hL)(O) = 0, we have 

Let % be the standard Gaussian density with variance s. Then the convolution 

E(hL) * % is an e v e n  test hmction. Hence, the imegral 

fo ~ (E(hL) * %)(rO) - (E(hL) * %)(O) d r 
r 2 
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is well defined for any s > 0, and is equal to 1/2@ -2, (E(hL) * %)(r0)) (see 
[GS], page 52, formula (7)). Splitting it into two integrals over [0, 1] and [1, oo) 

and using the fact that the derivatives up to order 4 of the function F(r) =- 
(E(hL) * %)(r0) are uniformly (with respect to e) bounded, we get 

lira f ~  (E(hn) * 7~) ( r0 ) -  (E(hn) * "~'~)(0) dr = f ~  E(hn!(rO) dr. 
e--+0 Jo  r2 Jo r ~ 

This, together with the definition of extended measure (5) and the dominated 

convergence theorem gives: 

fK(x)E(hL)(x)dx = lim l ~ n ~--+0 2 n-1 {r-2' (E(hL) * %)(rO))fK(O)dO 

1 
= lim(ft~-, E(hL) * 7~) = ~--,olim - ~  (fle, (E(hL) * ~c) A ) 

= l i m  1 fR ~(~)E--~L) (~)~(~)d~ 
~--~0 ~ n 

' 

PROPOSITION 7: Under the same notation, 

l ~ f o ~  F(3/4) fK(O)hL(O)dO- (27r)n fK(O) rnpL(rO)drdO. 
n--I n - - I  

Proof: Note that 

/o (25) F(3/4~) hn(O) = r-2E(hL)(rO)dr. 
4 

Passing to polar coordinates and using (25), Proposition 6, and the fact that ft¢ 

is a homogeneous function of degree - n  - 1 on I~ n , we get 

F(3/4)4 ~,n- ,  f,<(O)hL(O)dO = £~ fi;(x)E(hL)(x)dx 

- (27r), ~ ~ fK(()pL(()d~ 

_ 1 f 

js,,_:,.:)dOjo . 

We finish the proof of Lemma 4 by comparing Propositions 5 and 7. 1 
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